ANASPEC

A Sensitive Fluorimetric Assay for Detection of HIV-1 Protease Using a **Novel FRET Peptide Substrate**

Xiuqing Li, Yi Tang, Xudong Zhu, Xing Han, Xiaohe Tong, Zhenjun Diwu and Anita Hong AnaSpec Inc., 2149 O'Toole Ave, San Jose, CA 95131, USA

Introduction

The 10~12 kD aspartic protease of human immunodeficiency virus-1 (HIV-1) is required for the post-translational cleavage of the precursor polyproteins, Prgag and Prgag-pol.1 These cleavages are essential for the maturation of HIV infectious particles. Thus, the protease becomes one of the key targets for developing anti-AIDS drugs.

Although the EDANS/DABCYL FRET pair has been widely used in the fluorimetric assay for the detection of HIV-1 protease, this pair has relatively weak fluorescence signal with short wavelength. We designed a novel HiLyte FluorTM488/QXLTM520 pair that are used to develop more sensitive HIV-1 substrates for detecting HIV-1 protease activity.

In the FRET peptide, the fluorescence of HiLyte FluorTM488 is guenched by QXL[™]520 until this peptide is cleaved into two separate fragments by HIV-1 protease. With excellent fluorescence quantum yield and longer excitation and emission wavelength, the fluorescence signal of HiLyte Fluor™488 is less interfered by the autofluorescence of cell components and test compounds.

Results

Figure 1. The absorption spectrum of QXLTM520 perfectly overlaps with the emission spectrum of HiLyte FluorTM488.

HiLyte FluorTM488 is a new flurophore we designed. Its extinction coefficient is 92,400 M-1cm-1which is 3-fold higher than that of EDANS. The excitation and emission wavelengths of HiLyte Fluor™488 are 490 nm and 520 nm, respectively

These wavelengths are longer than those of EDANS (Ex = 340 nm and Em = 490 nm), thus fluorescence of HiLyte FluorTM488 is less interfered by the short wavelength autofluorescence of drug candidates. Additionally, HiLyte Fluor™488 is much brighter and less sensitive to the environment than EDANS. In addition, we also developed a quencher QXL™520. Its absorption spectrum perfectly overlaps with the emission spectrum of HiLyte FluorTM488, and QXLTM520 is a hydrophilic compound unlike DABCYL which is hydrophobic. This property of QXLTM520 increases the solubility of the peptide substrate. Thus, these characteristics of HiLyte Fluor™488 and QXL™520 prompted us to design a more sensitive HiLyte FluorTM488/QXLTM520 FRET peptide substrate for HIV-1 protease.

Figure 2. Proteolytic cleavage of HiLyte FluorTM488/OXLTM520 FRET peptide by HIV-1 protease

At the same concentration, HiLyte FluorTM488 has much stronger fluorescence intensity than EDANS (Figure 3). Thus, HiLyte Fluor™488-based FRET peptide is potentially more sensitive than EDANS-based FRET peptide.

Figure 3. Compare the fluorescence intensity of HiLyte FluorTM488 and EDANS

HiLyte FluorTM488/QXLTM520 FRET peptide (Figure 2) based on the sequence of EDANS/DABCYL FRET peptide. We changed the donor and quencher to HiLvte FluorTM488 and OXLTM520. respectively. The fluorescence of HiLyte FluorTM488 is quenched by QXL[™]520 until the peptide is cleaved by HIV-1 protease. Upon cleavage, the fluorescence of HiLyte Fluor™488 is recovered and can be continuously monitored at Excitation/Emission=490 nm/520 nm over time.

Figure 4a. The initial velocities (Vo) at each enzyme concentration were calculated and plotted against the HIV-1 molecules. The initial velocities are expressed at mFU/sec.

Figure 4b. The initial velocities (Vo) at each enzyme concentration were calculated and plotted against the HIV-1 molecules. The initial velocities are expressed at nM/min

Although at the same enzyme concentration, the HIV-1 protease cleaves the EDANS/DABCYL peptide a slightly faster than HiLyte FluorTM488/QXL520 peptide (Fig 4b), the relative fluorescence unit (RFU) generated in the assay using HiLyte FluorTM488/QXL520 peptide was much higher than that in the assay using EDANS/DABCYL peptide (Figure 4a), since the fluorescence intensity of HiLyte FluorTM488 is stronger than EDANS (Figure 3). The enzyme detection dynamic range of HiLyte Fluor™488/QXL™520 FRET peptide is almost same as EDANS/DABCYL FRET peptide. However, fiugure 4a also demonstrates that the HiLyte Fluor™488/QXL™520 FRET peptide is eight times more sensitive than EDANS/DABCYL FRET peptide.

Figure 5a. Double-reciprocal plot of the initial hydrolysis velocity versus EDANS/DABCYL FRET peptide concentration

Figure 5b. Double-reciprocal plot of the initial hydrolysis velocity versus HiLvte FluorTM488/OXLTM520 FRET peptide concentration.

Table 1. The comparison of kinetic parameters of two FRET substrates.*

	Vmax (RFU/sec)	$K_m(\mu M)$	$K_{cat}/K_m (M^1 s^{-1})$
HiLyte FluorTM488/QXLTM520 FRET peptide	7.12	6.912	1.7×10^{7}
EDANS/DABCYL FRET peptide	0.38	11.6	5.3x10 ⁵
Hil yta EluorTM488/OXI TM520 EPET paptida has smallar Kin and higher Keat/Kin yalua			

compared to EDANS/DABCYL FRET peptide.

Discussion and Conclusion

We have developed a highly sensitive FRET substrate for monitoring HIV-1 protease acitivity. The Kcat/Km of HiLyte FluorTM488/ QXLTM520 FRET peptide is 32-fold higher than that of the corresponding EDANS/DABCYL equivalent. This HiLyte FluorTM488/QXLTM520 FRET peptide is more sensitive than its EDANS/DABCYL equivalent. Compared to EDANS, HiLyte FluorTM488's longer excitation and emission wavelength can minimize the interference from the autofluorescence emitted by test compounds.

In conclusion, this HiLvte FluorTM488/OXLTM 520 FRET peptide has improved enzyme kinetic parameters and assay sensitivity compared to the existing EDANS/DABCYL peptide. It can be applied to the high throughput screening of anti-HIV-1 protease drugs.

Reference:

1. S. Seelmeier, H. et al. Proc.Natl.Acad.Sci.U.S.A 85, 6612-6616 (1988).